
Multivariate Verfahren
7.1 Unsupervised Learning: Clustering

Hannah Schulz-Kümpel

based on lecture slides by Sabine Hoffmann

Institut für Statistik, LMU München

Sommersemester 2024



Contents

1 What is unsupervised Learning?

2 Clustering
Non-probabilistic methods

Hierarchical clustering
Partitional, distance-based clustering

Probabilistic methods

3 Cluster validation
Internal

Hannah Schulz-Kümpel Multivariate Verfahren 2 / 79



What is unsupervised Learning?

What is unsupervised Learning? We recall:
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What is unsupervised Learning?

What is unsupervised Learning? I

In contrast to supervised learning, unsupervised learning methods

are applied to data that is not labelled:

D = {x1, . . . , xn} ∈ X n

(i.e. no yis)

and aim at “making inferences about the structure of D ”.
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What is unsupervised Learning?

What is unsupervised Learning? II

This goal is, admittedly, much vaguer than “finding the optimal parameter
θ”, but unsupervised learning methods have a lot of relevant applications,
like

data visualization,

exploratory data analysis,

grouping objects −→ this lecture,

dimensionality reduction −→ following lecture(s)
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Clustering

Clustering

Clustering refers to unsupervised learning methods aimed at grouping
similar data points together.

So we start with a sequence (or tupel) of data points
D = {x1, . . . , xn} with the goal of assigning each point to one of K
separate clusters.

Applications of clustering methods include: Image Processing,
Genomics, Anomaly Detection, Document Categorization, etc.

Can clustering algorithms also be used for supervised learning? Yes!
See the very end of these slides.
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Clustering

One way to categorize Clustering methods

Source: Saxena, Amit Kumar et al. “A review of clustering techniques and developments.” Neurocomputing 267 (2017): 664-681.
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Clustering

Clustering methods covered in this class
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Clustering Non-probabilistic methods

Hierarchical Clustering
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Clustering Non-probabilistic methods

Idea behind hierarchical clustering

Agglomerative methods
Start with n objects as
individual clusters.

In each step, the two closest
clusters are summarized.

Divisive methods
Start with all n objects in a
cluster.

A cluster is split in each step.

A

D
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Clustering Non-probabilistic methods

Hierarchical clustering

Form a hierarchy of partitions C = {C1, . . . , Cg} according to one of the
following two principles:

Agglomerative methods
Start with the partition C(0) = {{x1}, . . . , {xn}}, in which each
observation forms its own cluster and successively merge the clusters.

Divisive methods
Start with the partition C(0) = {x1, . . . , xn}, where all observations
form a single cluster and successively divide the clusters.

For both methods, the hierarchy of partitions C(0), . . . ,C(n) may be
visualized as a dendogram:
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Clustering Non-probabilistic methods

Source: Saxena, Amit Kumar et al. “A review of clustering techniques and developments.” Neurocomputing 267 (2017): 664-681.
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Clustering Non-probabilistic methods

Linkage: Quantifying distances between classes

Single linkage:
- Minimal distance between clusters
- Nearest Neighbor

Complete linkage:
- Maximal distance between objects

Average linkage:
- Mean deviation of all pairwise distances

G1 G2

Zentroid procedure:
- Distance between cluster centroids

G1 G2

Ward method:
- Consider the inertia within the clusters
- Analog to k-means (but not optimal)
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Clustering Non-probabilistic methods

Agglomerative hierarchical Clustering I

In this class, we focus on agglomerative hierarchical clustering
methods.

Here, we require:
A distance measure to quantify the distance between objects

A distance measure to quantify the distance between classes

The objects (classes) with the shortest distance are grouped together.

This procedure is carried out until all objects are combined into one
class.
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Clustering Non-probabilistic methods

Agglomerative hierarchical Clustering II

Start partition: C(0) = {C(0)
1 = {x1}, . . . , C(0)

n = {xn}}

In the νth step, merge those clusters

C(ν)
r , C(ν)

s , r ̸= s ,

which have the smallest distance D.

The distance between the objects is determined by a distance
measure, the distance between the clusters by the Linkage.
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Clustering Non-probabilistic methods

Agglomerative hierarcical clustering: Algorithm

Step 1: Find the two elements that are closest to each other and combine
them.

18 19 7 16 9 17 8 5 6 2 3 1 4 14 15 10 11 12 13

0

2

4

H
ei

gh
t
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Clustering Non-probabilistic methods

Agglomerative hierarcical clustering: Algorithm

Step 2: Using some type of Linkage, determine the distance between the
clusters.
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Clustering Non-probabilistic methods

Agglomerative hierarcical clustering: Algorithm

Step 3: Stop when all objects are combined.
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Clustering Non-probabilistic methods

Example: agglomerative procedure

Consider the age of 6 persons: 43, 38, 6, 47, 37, 9

Determine the Euclidean distance between 2 people:

Merge classes with the smallest distance ⇒ Merge classes 2 and 5
(ages 37 and 38)
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Clustering Non-probabilistic methods

Example: agglomerative procedure

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

How is the distance between {2, 5} and the other classes determined?
We use some type of Linkage to calculate the distance

D(Cr, Cs) with Cr, Cs ⊂ C(i) for step i.
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Clustering Non-probabilistic methods

Single Linkage

For Single Linkage, we have

DSL(Cr, Cs) = min
xi∈Cr
xj∈Cs

{d(xi, xj)}

"Nearest Neighbor"

Robust against small changes to individual data points

Risk of chain formation or bridge formation

Application in taxonomy
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Clustering Non-probabilistic methods
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Clustering Non-probabilistic methods

Example: Single Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

DSL({2, 5}, {1}) = min{d21, d51} = min{5, 6} = 5

DSL({2, 5}, {3}) = min{d23, d53} = min{32, 31} = 31

DSL({2, 5}, {4}) = min{d24, d54} = min{9, 10} = 9

DSL({2, 5}, {6}) = min{d26, d56} = min{29, 28} = 28
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Clustering Non-probabilistic methods

Example: Single Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge classes 3 and 6 (age 6 and 9)

Hannah Schulz-Kümpel Multivariate Verfahren 21 / 79



Clustering Non-probabilistic methods

Example: Single Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge classes 1 and 4 (age 43 and 47)
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Clustering Non-probabilistic methods

Example: Single Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge {1,4} and {2,5}
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Clustering Non-probabilistic methods

Example: Single Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9
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Clustering Non-probabilistic methods

Complete Linkage

For Complete Linkage, we have

DCL(Cr, Cs) = max
xi∈Cr
xj∈Cs

d(xi, xj)

“Furthest Neighbor”

Large clusters grow slowly

Instability with regard to small changes

Suitable for splitting data without a clear structure
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Clustering Non-probabilistic methods
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Clustering Non-probabilistic methods

Example: Complete Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

DSL({2, 5}, {1}) = max{d21, d51} = max{5, 6} = 6

DSL({2, 5}, {3}) = max{d23, d53} = max{32, 31} = 32

DSL({2, 5}, {4}) = max{d24, d54} = max{9, 10} = 10

DSL({2, 5}, {6}) = max{d26, d56} = max{29, 28} = 29
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge classes 3 and 6 (age 6 and 9)
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge classes 1 and 4 (age 43 and 47)
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Clustering Non-probabilistic methods

Example: Complete Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

⇒ Merge {1,4} and {2,5}
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Clustering Non-probabilistic methods

Example: Complete Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9
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Clustering Non-probabilistic methods

Average Linkage

For Average Linkage, we have

DAL(Cr, Cs) =
1

nrns

∑
xi∈Cr

∑
xj∈Cs

d(xi, xj)

with ni = | Ci |

Compromise between complete linkage and single linkage

Averaging should make sense
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Clustering Non-probabilistic methods
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

DAL({2, 5}, {1}) = d21+d51
2 = 5+6

2 = 5.5

DAL({2, 5}, {3}) = d23+d53
2 = 32+31

2 = 31.5

DAL({2, 5}, {4}) = d24+d54
2 = 9+10

2 = 9.5

DAL({2, 5}, {6}) = d26+d56
2 = 29+28

2 = 28.5
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

DAL({3, 6}, {2, 5}) = d32+d35+d62+d65
4 = 32+31+29+28

4 = 30

DAL({3, 6}, {1}) = d31+d61
2 = 37+34

2 = 35.5

DAL({3, 6}, {4}) = d34+d64
2 = 41+38

2 = 39.5
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Clustering Non-probabilistic methods

Example: Average Linkage

We are still considering the age of 6 persons: 43, 38, 6, 47, 37, 9

And so on...
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Clustering Non-probabilistic methods

Comparison of Single, Average, and Complete Linkage
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Clustering Non-probabilistic methods

Zentroid-Procedure

For the Zentroid-Procedure, we have

DZ(Cr, Cs) = ∥ x̄r − x̄s ∥2

with x̄i =
1

ni

∑
j∈Ci

xj

Note: This procedure is only suited for metric data points.
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Clustering Non-probabilistic methods

Example: Zentroid-Procedure

Next, let’s consider the age of 4 persons: 19, 25, 20, 23
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Clustering Non-probabilistic methods

Example: Zentroid-Procedure

Again considering the age of 4 persons: 19, 25, 20, 23

Mean of class {1, 3} = (19 + 20)/2 = 19.5

DZ({1, 3}, {2}) = (19.5− 25)2 = 30.25

DZ({1, 3}, {4}) = (19.5− 23)2 = 12.25

Hannah Schulz-Kümpel Multivariate Verfahren 31 / 79



Clustering Non-probabilistic methods

Example: Zentroid-Procedure

Again considering the age of 4 persons: 19, 25, 20, 23

Hannah Schulz-Kümpel Multivariate Verfahren 32 / 79



Clustering Non-probabilistic methods

Example: Zentroid-Procedure

Again considering the age of 4 persons: 19, 25, 20, 23

Mean of class {2, 4} = (25 + 23)/2 = 24

DZ({1, 3}, {2, 4}) = (19.5− 24)2 = 20.25
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Clustering Non-probabilistic methods

Comparison of Zentroid and Average-Linkage when using
the squared euclidean distance

DAL(Cr, Cs) =
1

nrns

∑
xi∈Cr

∑
xℓ∈Cs

{d(xi, xℓ)}

=
1

nrns

∑
xi∈Cr

∑
xℓ∈Cs

∥xi − xℓ∥2

= ∥x̄r − x̄s∥2 +
1

nr

∑
xi∈Cr

∥xi − x̄r∥2 +
1

ns

∑
xℓ∈Cs

∥xℓ − x̄s∥2

= DZ(Cr, Cs) + s2r + s2s

→ Average linkage takes into account the distance between the
centers of gravity and the spread around it.
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Clustering Non-probabilistic methods

Ward method

Motivation: Merge the two clusters that generate the minimum increase in
variance (heterogeneity) in the new cluster:

H(C) =
k∑

r=1

∑
xi∈Cr

∥xi − x̄r∥2

with
x̄r =

1

nr

∑
xi∈Cr

xi
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Clustering Non-probabilistic methods

Ward method: properties of Inertia I

The overall inertia may be devided in:

Inertia between the K clusters Ck, k = 1, . . . ,K

Inertia within the clusters (sum of inertia in the K clusters)

x̄
x̄

x̄2

x̄4

x̄1

x̄3

C2

C4

C1

C3
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Clustering Non-probabilistic methods

Ward method: properties of Inertia II

total inertia = inertia between the clusters + inertia within the
clusters

IG =
1

n

n∑
i=1

∥xi − x̄∥2 =
K∑
k=1

nk

n
∥x̄k − x̄∥2 + 1

n

K∑
k=1

∑
i∈Ck

∥xi − x̄k∥2

The total inertia is constant, we aim to minimize the within cluster
inertia (similar to maximizing the between cluster inertia)
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Clustering Non-probabilistic methods

Example: Ward method

Again considering the age of 4 persons: 19, 25, 20, 23

Consider all possibilities C = {{1}, {2}, {3}, {4}} for merging
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Clustering Non-probabilistic methods

Example: Ward method

Again considering the age of 4 persons: 19, 25, 20, 23

Now, consider all possibilities for merging onC = {{1, 3}, {2}, {4}}
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Clustering Non-probabilistic methods

Properties of agglomerative Clustering methods

Single-Linkage tends to form chains (suitable for identifying outliers).

Average-Linkage and Ward lead to very homogeneous clusters.

Complete-Linkage is more sensitive to small changes in the data than
Single-Linkage.

Centroid and Ward are only applicable for metric features.

Centroid and Ward can lead to Inversion (distance measure decreases
compared to previous step)
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Clustering Non-probabilistic methods

Comparison of different Linkage-types
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Clustering Non-probabilistic methods

Distance-based partitioning
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Clustering Non-probabilistic methods

Distance-based partitioning

Next, we will turn to Clustering methods based distance-based
partitioning.

Here, we

1 Choose the desired number of clusters K.

2 For a distance-based distortion function H, choose the “optimal”
clustering partition Copt so out of the set C of all possible partitions
forming K clusters:

H(Copt) = min
C(i)∈C

H(C(i)) .

This may be repeated for different values of K or proceeded by a
different algorithm to choose the best suited value of K - more later.
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Clustering Non-probabilistic methods

General numeric solution by substitution

1 Select an initial partition C(0).

2 In the partition C(i) (i = 1, 2, . . . ), check whether the assignment to
another cluster improves the quality criterion H for each object .

3 Assign the object that results in the greatest improvement in H to the
corresponding cluster. This results in the new partition C(i+1).

4 Iterate steps 2 and 3 until there is no more improvement (i.e. the
algorithm converges).
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Clustering Non-probabilistic methods

Common examples: k-Means and k-Medoids Algorithms I
the k-means and k-medoids clustering methods are both instances of
distance-based partitioning.

They both define clusters around “centers”, with k-means using cen-
troids (mean of points) and k-medoid using medoids (actual points).

Specifically, these algorithms use the following distortion function,
respectively:

(k-means), for x̄r :=
1

|Cr|
∑

xi∈Cr
xi

H(C) =
k∑

r=1

∑
xi∈Cr

∥xi − x̄r∥2,
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Clustering Non-probabilistic methods

Common examples: k-Means and k-Medoids Algorithms II

k-medoids, for some distance function d and
mr = argmin

y∈Cr

∑
xi∈Cr

d (y, xi)

H(C) =
k∑

r=1

∑
xi∈Cr

d(xi,mr).

For both these methods, we may use the “general numeric solution by
substitution”, also called Lloyd’s algorithm.

However, this “naive” approach works much more reliably for k-means
than k-medoids.
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Example with K = 2 clusters
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 1:
Randomly select two observations as
initial mean values.
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 1:
Assign each observation to its closest
centroid, based on the Euclidean
distance between the object and the
centroid
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 2:
For each of the clusters, update the
cluster centroid by calculating the
new mean values of all the data
points in the cluster
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 2:
Allocate each observation to the
cluster whose mean value has the
smallest distance
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 3:
Update the cluster centroids
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 3:
Again, allocate each observation to
the cluster whose mean value has the
smallest distance
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 4:
Update the cluster centroids
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 4:
Again, allocate each observation to
the cluster whose mean value has the
smallest distance
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 5:
Update the cluster centroids
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 5:
Again, allocate each observation to
the cluster whose mean value has the
smallest distance
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 6:
Update the cluster centroids
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Clustering Non-probabilistic methods

Lloyd’s algorithm for k-means (“naive/standard k-means”)

Iteration 6:
No further changes in the allocation
→ algorithm is finished.
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Clustering Non-probabilistic methods

Standard k-means converges! I

It is relatively straightforward to show that the standard/naive k-means
algorithm converges.

To do so, we first need the following Lemma by Shivaram Kalyanakrishnan.

Lemma

Consider the points z1, z2, . . . ,zm, where m ≥ 1, and for
i ∈ {1, 2, . . . ,m}, zi ∈ Rd. Let z = 1

m

∑m
i=1 z

i be the mean of these
points, and let z ∈ Rd be an arbitrary point in the same (d-dimensional)
space. Then

m∑
i=1

∥∥zi − z
∥∥2 ≥ m∑

i=1

∥∥zi − z
∥∥2 .

Proof
m∑
i=1

∥∥zi − z
∥∥2 = m∑

i=1

∥∥(zi − z
)
+ (z − z)

∥∥2
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Clustering Non-probabilistic methods

Standard k-means converges! II

=

m∑
i=1

(∥∥zi − z
∥∥2 + ∥z − z∥2 + 2

(
zi − z

)
· (z − z)

)
=

m∑
i=1

∥∥zi − z
∥∥2 + m∑

i=1

∥z − z∥2 + 2

m∑
i=1

(
zi · z − zi · z − z · z + z · z

)
=

m∑
i=1

∥∥zi − z
∥∥2 +m∥z − z∥2 + 2(mz · z −mz · z −mz · z +mz · z)

=

m∑
i=1

∥∥zi − z
∥∥2 +m∥z − z∥2

≥
m∑
i=1

∥∥zi − z
∥∥2
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Clustering Non-probabilistic methods

Standard k-means converges! III
Let us denote by t+ 1 the iteration of the standard k-means algorithm
that follows iteration t.

If we can show that given a specific initialization (x̄
(0)
1 , . . . , x̄

(0)
k ) the

distortion function/cost H(C) strictly decreases in every step until
determination of the algorithm, i.e.

H
(
C(t)

)
=

k∑
r=1

∑
xi∈C

(t)
r

∥xi − x̄(t)
r ∥2 >

k∑
r=1

∑
xi∈C

(t+1)
r

∥xi − x̄(t+1)
r ∥2 = H

(
C(t+1)

) (⋆)

it follows that the algorithm will converge, since the number of possible
partitions is finite and no clustering can be visited twice by (⋆).
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Clustering Non-probabilistic methods

Standard k-means converges! IV

Thereby, the following Theorem is equivalent to showing that the standard
k-means algorithm converges:

Theorem
When applying the standard k-means algorithm to data D, the following
holds given any specific initialization (x̄

(0)
1 , . . . , x̄

(0)
k ) with x̄

(0)
1 ∈ D

∀i ∈ {1, . . . , k},
H

(
C(t)

)
> H

(
C(t+1)

)
.

Proof
Hereafter, let µt and Ct denote the set of cluster centroids and clusters in
the tth iteration of the k-means algorithm, respectively; and define.

SSE
(
Cl,µj

)
:=

k∑
r=1

∑
xi∈C

(l)
r

∥xi − x̄(j)
r ∥2 .
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Clustering Non-probabilistic methods

Standard k-means converges! V

The proof is now completed in two steps:

Step 1: SSE
(
Ct+1,µt

)
< SSE

(
Ct,µt

)
Step 2: SSE

(
Ct+1,µt+1

)
≤ SSE

(
Ct+1,µt

)
.

The first step follows directly from the logic of the algorithm: Ct and Ct+1

are different only if there is a point that finds a closer cluster centre in µt

than the one assigned to it by Ct :

SSE
(
Ct+1,µt

)
=

n∑
i=1

∥∥∥xi − µt
Ct+1(i)

∥∥∥2 < n∑
i=1

∥∥∥xi − µt
Ct(i)

∥∥∥2 = SSE
(
Ct,µt

)
.
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Clustering Non-probabilistic methods

Standard k-means converges! VI

The second step follows from the Lemma by Shivaram Kalyanakrishnan:

SSE
(
Ct+1,µt+1

)
=

n∑
i=1

∥∥∥xi − µt+1
Ct+1(i)

∥∥∥2
=

k∑
k′=1

∑
i∈{1,2,...,n},Ct+1(i)=k′

∥∥∥xi − µt+1
Ct+1(i)

∥∥∥2
≤

k∑
k′=1

∑
i∈{1,2,...,n},Ct+1(i)=k′

∥∥∥xi − µt
Ct+1(i)

∥∥∥2
=

n∑
i=1

∥∥∥xi − µt
Ct+1(i)

∥∥∥2 = SSE
(
Ct+1,µt

)
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 1:
Randomly select two observations as
initial mean values.
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 1:
Allocate each observation to its
closest centroid
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 2:
Update the cluster centroids
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 2:
Allocate each observation to its
closest centroid
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 3:
Update the cluster centroids
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Iteration 3:
No further changes in the allocation
→ algorithm is finished
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Within-cluster variance: 0.94
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Clustering Non-probabilistic methods

Naive/standard k-means second example

Within-cluster variance: 0.94 Within-cluster variance: 0.63
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Clustering Non-probabilistic methods

k-means++: Lessening the effect ob suboptimal random
initialization

Algorithm 1: Initialization according to k-means++
Data: Data D to be clustered into k cluster
Result: Not fully random initialization centroids for k-means

pick x ∈ D uniformly at random and set T ← {x};
while |T | < k do

pick x ∈ D randomly with probability proportional to
the cost, i.e. p ∝ min

z∈T
∥x− z∥2

set T ← T ∪ {x}
end

Arthur and Vassilvitskii (2007) actually suggest that this procedure in and
of itself is a pretty solid clustering technique, but k-means is usually applied
on top.
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Clustering Non-probabilistic methods

k-means and k-medoids will achieve different results!
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Clustering Non-probabilistic methods

K-Means vs. K-Medoids

K-Means
– Works with means of data

points, i.e. computes centroids
to use as cluster
representatives.

– Sensitive to outliers.

– Lloyd’s algorithm is reasonable
(but can be approved upon).

– Uses Euclidean distance.

K-Medoids
– Works with medians of data

points, i.e. chooses actual data
points as cluster
representatives.

– Robust to outliers.

– Lloyd’s algorithm gets stuck
in local optima too easily.

– Can use different distance
metrics.
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Clustering Non-probabilistic methods

Suitable algorithms for k-medoids

Since in k-medoids clustering only actual data points are chosen as
cluster representatives, applying Lloyd’s algorithm is much more prone
to getting stuck in local optima than k-means.

For this reason as well as computability etc., one usually employs other
algorithms for k-medoids.

Just as with k-means++, these algorithms should include some
initialization step.

A very common choice for k-medoids is Partitioning Around Medoids
(PAM), which will be detailed on the following slides.
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Clustering Non-probabilistic methods

Partitioning Around Medoids (PAM) I

We recall that with k-medoids
for some distance function d and mr = argmin

y∈Cr

∑
xi∈Cr

d (y, xi), we want

to find the partition that minimizes H(C) =
∑k

r=1

∑
xi∈Cr

d(xi,mr).

The PAM algorithm consists of two steps:

1 PAM BULD Initializes the clusters and

2 PAM SWAP Improves the clustering.
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Clustering Non-probabilistic methods

Partitioning Around Medoids (PAM) II

For both, we need to calculate the change in H from one cluster
center to another - there are different methods to do this efficiently,
but we will not discuss them in this lecture. Instead, we simply write
∆H for the change of H(·) in our algorithm.

Algorithm 2: PAM BUILD
Data: Data D to be clustered into k cluster
Result: Initial clusters for the PAM k-medoids algorithm

m1 ← point x ∈ D that would minimize H for k = 1;
for i = 2, . . . , k do

mi ← point x ∈ D that maximizes −∆H
end
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Clustering Non-probabilistic methods

Partitioning Around Medoids (PAM) III

Algorithm 3: PAM SWAP
Data: Initial clusters for the PAM k-medoids algorithm
Result: Clusters according to PAM k-medoids

repeat
for mi ∈ {m1, . . . ,mk} do

for xj ∈ D \ {m1, . . . ,mk} do
∆H ← Change in H with xj medoid instead of mi;
Remember (xj ,mi,∆H) for the best ∆H

Break if The best ∆H ≥ 0 (No improvement of the clustering);
Swap (mi, xj) of the best ∆H

until Clustering partition converges;
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Clustering Non-probabilistic methods

Visualization of why PAM helpts

Source: https://dm.cs.tu-dortmund.de/en/mlbits/cluster-kmedoids-intro/#ref-DBLP:conf/sisap/SchubertR19
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Clustering Probabilistic methods

Model-based Clustering
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Clustering Probabilistic methods

Model-based Clustering I

Definition: Model-based clustering assumes that data is generated
from a mixture of underlying probability distributions, where each
distribution represents a cluster.

Key Concept: Each cluster can be thought of as a distribution (often
Gaussian) and the goal is to identify the parameters of these
distributions.
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Clustering Probabilistic methods

Model-based Clustering II

Some advantages of Model-based clustering:

Probabilistic Framework: Provides a probabilistic model of the data,
which can handle noise and outliers better.

Flexibility through soft assignment: Can model clusters of varying
shapes and sizes by assigning each observations a probability of
belonging to each cluster.

Automatic Determination of Number of Clusters: Uses criteria such as
the Bayesian Information Criterion (BIC) for model selection.
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Clustering Probabilistic methods

General approach of mixture-distributions I

We assume that the underlying population of our data is partitioned into k
groups C1, . . . , Ck, with each group/component following a different
distribution.
Underlying this are, for a random variable Z with realizations in {1, . . . , k},
where

p(r) = P (Z = r) : unknown probability of selecting component r,
with

∑k
r=1 p(r) = 1.

f(x|θr) : density of the random vector X in the r-th population with
parameters θr.

One then assumes that observations X1, . . . , Xn are drawn i.i.d. from the
distribution defined via the following mixed density:

f(xi) =

k∑
r=1

p(r)f(xi|θr) .
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Clustering Probabilistic methods

General approach of mixture-distributions I

What does this remind you of?

Hopefully generative models!

In fact, model-based clustering methods such as GMMs may be used to
generate new data!
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Clustering Probabilistic methods

General approach of mixture-distributions I

What does this remind you of? Hopefully generative models!

In fact, model-based clustering methods such as GMMs may be used to
generate new data!

Hannah Schulz-Kümpel Multivariate Verfahren 65 / 79



Clustering Probabilistic methods

In this lecture, we will specifically be looking at

Gaussian Mixture Models (GMMs)

How to “solve” them using the Expectation-Maximization (EM)
algorithm

A nice reference is the Stanford STATS 306B: Unsupervised Learning lecture
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Clustering Probabilistic methods

Gaussian Mixture Models (GMMs) I

GMMs follow the general approach of mixture-distributions from
before, with densities f(x|θr) chosen as multivariate Gaussian density
with unknown parameters (µj ,Σj):

f(x|θr) = ϕ (x;µj ,Σj) =
1

|(2π)kΣj |1/2
exp

(
−1

2
(x− µj)

T Σ−1
j (x− µj)

)

Note that the actual component any Xi belongs to may be seen as a
latent variable zi with Xi|zi being conditionally independently
distributed with density ϕ (x;µzi ,Σzi).

Under the GMM, our clustering task amounts to inferring the latent
component zi responsible for each xi.
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Clustering Probabilistic methods

Gaussian Mixture Models (GMMs) II

How we would carry out the clustering task if the parameter values
were already known?

Since the GMM then defines a joint distribution over (xi, zi), it is natural
to consider the conditional distribution of each zi given xi :

f (zi = j | xi) =
p (zi = j) f (xi | zi = j)

f (xi)

=
πjϕ (xi;µj ,Σj)∑k
l=1 πlϕ (xi;µl,Σl)

, with πk := p(zi = k) = p(Y = k).

=⇒ These conditionals reflect our updated beliefs concerning zi after xi is
observed: before we observe xi, we have the prior belief that it belongs to
cluster j with probability πj ; after observing xi, we can update this belief
in accordance with the likelihood of xi under each Gaussian component.
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Clustering Probabilistic methods

Gaussian Mixture Models (GMMs) III

=⇒ the inference issue in GMMs is to find the parameters
(π1:k, µ1:k,Σ1:k)

Usually, this would mean optimizing the log-likelihood

n∑
i=1

log (p (xi)) =

n∑
i=1

log

 k∑
j=1

πjϕ (xi;µj ,Σj)

 .

However, for k > 1, which is what we are interested in here, this is not
quite straightforward (Keywords closed form solution, identifiability).

=⇒ This is where the Expectation-Maximization (EM) algorithm comes
in!
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Clustering Probabilistic methods

EM algorithm for GMMs I

Step 1: Initialize parameter values (π1:k, µ1:k,Σ1:k) arbitrarily (or
using some initialization algorithm)

Then, iterate the following two steps until convergence:

Step 2: (Expectation) Compute soft class memberships, given the
current parameters:

τij = P (zi = j | xij , π, (µℓ,Σℓ))

Step 3:(Maximization) Update parameters by plugging in τij (our
guess) for the unknown I{zi=j}, which gives us:

πj =
1

n

n∑
i=1

τij , µj =

∑n
i=1 τijxi∑n
i=1 τij

,

Σj =

∑n
i=1 τij (xi − µj) (xi − µj)

T∑n
i=1 τij

.
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Clustering Probabilistic methods

EM algorithm for GMMs II
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Clustering Probabilistic methods

Visualization of Gaussian Mixture Models

Source: https://stats.stackexchange.com/questions/517652/how-to-evaluate-the-loss-on-a-gaussian-mixture-model
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Cluster validation

Validating Clustering results
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Cluster validation

Validating Clustering results I

How can one measure the quality of clustering results?

A common approach is to aim for a high intra-cluster (within-cluster)
similarity and a low inter-cluster (between-cluster) similarity.

Source: Medium
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Cluster validation

Validating Clustering results II

Generally, there are 3 different approaches for validating clustering results

internal cluster validation uses internal information of the clustering
process, e.g., the within-cluster sum of squares.

relative cluster validation varies parameters of the clustering
method, e.g., number of clusters

external cluster validation compares results to externally known
results, e.g., provided labels.
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Cluster validation

Example of relative cluster validation:
Model selection for GMMs

The idea behind the “automatic” determination of number of clusters
for GMMs is to run model selection over models resulting from a
variety of choices for number of clusters K.

For this, we need some measure for the goodness of model fit,
calculated, e.g. on the fitted likelihood. (One suitable and often used
option would be the Bayesian information criterion (BIC))

Note that measures for internal cluster validation usually are
also suitable for relative validation!

=⇒ More generally, we can always run a clustering algorithm with different
=⇒ parameters and choose the “best” version according to some validation
=⇒ technique.
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Cluster validation Internal

Previous example: 2-means with different random
initializations

Within-cluster variance: 0.94 Within-cluster variance: 0.63

=⇒ Even with the same choice of cluster numbers K, one random initial-
ization seems to produce much better results than the other.
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Cluster validation Internal

Example of internal validation:
Silhouette method I

Let ai be the average
distance between observation
i and all other observations
in the same cluster

Let bi be the average
distance between observation
i and the observations in the
nearest cluster

Si =
bi−ai

max(ai,bi)

C2

C4

C1

C3

i
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Cluster validation Internal

Example of internal validation:
Silhouette method I

Let ai be the average
distance between observation
i and all other observations
in the same cluster

Let bi be the average
distance between observation
i and the observations in the
nearest cluster

Si =
bi−ai

max(ai,bi)

C2

C4

C1

C3

i

ai =
d1+d2+d3

3

d2
d3

d1
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Cluster validation Internal

Example of internal validation:
Silhouette method I

Let ai be the average
distance between observation
i and all other observations
in the same cluster

Let bi be the average
distance between observation
i and the observations in the
nearest cluster

Si =
bi−ai

max(ai,bi)

C2

C4

C1

C3

i

ai =
d1+d2+d3

3

d2
d3

d1

dC2
= d1+d2+d3+d4

4
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Example of internal validation:
Silhouette method I

Let ai be the average
distance between observation
i and all other observations
in the same cluster

Let bi be the average
distance between observation
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nearest cluster
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Example of internal validation:
Silhouette method II

Observations with Si < 0 are probably in the wrong cluster.

The Average Silhouette Width of a partition (C) is defined as

ASW((C)) =
1

n

n∑
i=1

Si

A high value of ASW((C)) indicates a good cluster solution

⇒ The optimal number of clusters could be the one that maximizes the
average silhouette width
Again, the silhouette method may also be used for relative validation.
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Exemplary plot

Source: https://ryanwingate.com/intro-to-machine-learning/unsupervised/gaussian-mixture-models-and-cluster-validation/
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